ON BIFURCATION AND STABILITY OF STEADY MOTIONS OF TWO GRAVITATING BODIES \dagger

A. V. Karapetyan and I. D. Sakhokna
Moscow, Tbilisi

(Received 5 March 1992)

Abstract

The plane motion of a system of two mutually gravitating bodies, one a sphere with a spherical mass distribution and the other a homogeneous rod, is considered. All steady motions of the system are found, and the conditions for their stability are obtained in both the secular sense and in the first-order approximation. The possibility of gyroscopic stabilization of steady motions with instability of degree two is noted. The results of the investigation are presented in the form of a bifurcation diagram.

1. CONSIDER the plane motion of two mutually gravitating bodies, one of which is a material point of mass M (or a sphere with a spherical mass distribution), and the other is a homogeneous rod of mass m and length $2 a$. The state of the system will be described by the distance r between the mass centres of the bodies, the angle θ between the line joining the centres of mass and some direction fixed in the plane of motion, and the angle φ between the rod and the line joining its midpoint to the point M.

The kinetic and potential energies of the system [1] (f being the gravitational constant)

$$
\begin{aligned}
& T=\frac{1}{2} \mu M\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{1}{6} m a^{2}(\dot{\varphi}+\dot{\theta})^{2}, \quad \mu=\frac{m}{M+m} \\
& \Pi=-f \frac{M m}{2 a} \ln \frac{r \cos \varphi+a+\Phi^{+}}{r \cos \varphi-a+\Phi^{-}}, \Phi^{ \pm}=\left(r^{2} \pm 2 r a \cos \varphi+a^{2}\right)^{3 / 2}
\end{aligned}
$$

do not depend on θ. The system under consideration consequently has the areas integral

$$
\begin{equation*}
\partial T / \partial \dot{\theta} \equiv m\left(\mu r^{2}+1 / 3 a^{2}\right) \dot{\theta}+1 / 3 m a^{2} \dot{\varphi}=k=\text { const } \tag{1.1}
\end{equation*}
$$

as well as the energy integral $T+\Pi=$ const, and can perform steady motions of the form

$$
\begin{equation*}
r=\text { const, } \varphi=\text { const }, \quad \dot{\theta}=\omega=\text { const } \tag{1.2}
\end{equation*}
$$

Here the bodies rotate with the same constant angular velocity ω about their common centre of mass, and the rod is stationary with respect to the point M.

Ignoring the cyclic coordinate θ, we introduce the Routhian function

$$
\begin{aligned}
& R=(T-\Pi-k \dot{\theta}) \equiv R_{2}+R_{1}-W \\
& R_{2}=\frac{1}{2} \mu M\left[\dot{r}^{2}+\frac{1}{3} \frac{a^{2} r^{2}}{J} \dot{\varphi}^{2}\right], R_{1}=\frac{1}{3} \frac{a}{J} k \dot{\varphi} \\
& W=\Pi+\frac{1}{2} \frac{k^{2}}{J}, \quad J=\mu M r^{2}+\frac{1}{3} m a^{2}
\end{aligned}
$$

The steady motion of the original system corresponds to the equilibrium position of the reduced system described by the Routhian function R. Here the constants r and φ in (1.2) are defined by the system

$$
\begin{equation*}
\partial W / \partial \varphi=0, \quad \partial W / \partial r=0 \tag{1.3}
\end{equation*}
$$

\dagger Prikl. Mat. Mekh. Vol. 56, No. 6, pp. 935-938, 1992.

The reduced potential W^{\prime} is π-periodic in φ, and hence we shall study system (1.3) for $0 \leqslant \varphi \leqslant \pi$. The first equation of system (1.3) is identically satisfied (with respect to r) when

$$
\begin{equation*}
\text { 1) } \varphi=0, \text { 2) } \varphi=\pi / 2(\bmod \pi) \tag{1.4}
\end{equation*}
$$

Here the second equation of system (1.3) acquires the form

$$
\begin{align*}
& \frac{k^{2}}{f(M+m)}=F_{i}(r) \quad(i=1,2) \tag{1.5}\\
& F_{1}=\frac{J^{2}}{\left(r^{2}-a^{2}\right) r} \quad(\varphi=0), \quad F_{2}=\frac{J^{2}}{r^{2} \sqrt{r^{2}+a^{2}}} \quad\left(\varphi=\frac{\pi}{2}\right)
\end{align*}
$$

2. Consider steady motion of the form

$$
\begin{equation*}
\varphi=0, \quad r=r_{1}\left(k^{2}\right) \tag{2.1}
\end{equation*}
$$

where $r_{1}\left(k^{2}\right)$ is the solution of Eq. (1.5) for $i=1$. (Here, obviously, it is assumed that $r>a$.)
The function $F_{1}(r)$ has a lower bound, is positive, tends to infinity both as $r \rightarrow+\infty$ and as $r \rightarrow a+0$, and reaches a minimum at a unique point $r_{10}>a$ at which its derivative vanishes, where

$$
\begin{align*}
& \quad r_{10}=a\left(\frac{4-3 \mu+\sqrt{(4-3 \mu)^{2}-4 / 3(1-\mu)}}{2(1-\mu)}\right)^{1 / 2} \tag{2.2}\\
& \left(F_{1}^{\prime} \gtrless 0 \text { for } r \gtrless r_{10}\right) .
\end{align*}
$$

Thus, if the rod lies on the line connecting its centre to the point M, then for sufficiently small values of the areas integral constant $\left[k^{2}<k_{10}^{2}=f(M+m) F_{1}\left(r_{10}\right)\right]$ there are no steady motions (Eq. (1.5) having no solutions for $i=1$); for $k^{2}=k_{10}^{2}$ a unique solution $r=r_{10}$ exists, while for $k^{2}>k_{10}^{2}$ there are two families of steady motions $r=r_{1}^{+}\left(k^{2}\right)$ and $r=r_{1}^{-}\left(k^{2}\right)$, with $r_{1}^{+}\left(k^{2}\right)>r_{11}>r_{1}^{\prime}\left(k^{2}\right)$.

Computing the coefficients of the second variation matrix of the modified potential at the steady motions (2.1), we have

$$
\begin{aligned}
& \frac{\partial^{2} W}{\partial \varphi^{2}}=f M m \frac{a^{2} r}{\left(r^{2}-a^{2}\right)^{2}}>0, \quad \forall r, \quad \frac{\partial^{2} W}{\partial \varphi \partial r}=0, \\
& \frac{\partial^{2} W}{\partial r^{2}}=\mu M \frac{k^{2}}{\left(r^{2}-a^{2}\right)} \frac{F_{1}^{\prime}}{F_{1}^{2}} \gtrless 0 \quad \text { for } r \gtrless r_{10}
\end{aligned}
$$

Thus the family of steady motions $\varphi=0, r=r_{1}^{+}\left(k^{2}\right)$ is always stable, while the family of steady motions $\varphi=0, r=r_{1}^{-}\left(k^{2}\right)$ is always unstable (the degree of instability being unity).

We also note that the angular velocity of the point M and the rod rotating about their common centre of mass for steady motions (2.1) is given by the relation

$$
\begin{equation*}
\omega_{1}^{2}=\left\{\frac{f(M+m)}{r\left(r^{2}-a^{2}\right)}\right\}_{r=r_{1}\left(k^{2}\right)} \tag{2.3}
\end{equation*}
$$

3. We consider steady motions of the form

$$
\begin{equation*}
\varphi=\pi / 2, \quad r=r_{2}\left(k^{2}\right) \tag{3.1}
\end{equation*}
$$

where $r_{2}\left(k^{2}\right)$ is the solution of Eq. (1.5) for $i=2$ (and here, obviously, it is assumed that $r>0$).
The function $F_{2}(r)$ has a lower bound, is positive, tends to infinity both as $r \rightarrow+\infty$ and as $r \rightarrow 0+$. and reaches a minimum at the unique point $r_{20}>0$ at which its derivative vanishes, where

$$
\begin{equation*}
r_{20}=a\left(\frac{2 \mu-1+\sqrt{(2 \mu-1)^{2}+8 / 3(1-\mu)}}{2(1-\mu)}\right)^{1 / 2} \tag{3.2}
\end{equation*}
$$

(here $F_{1}^{\prime} \gtrless 0$ for $r \gtrless r_{20}$).
Thus if the rod is perpendicular to the line joining its centre to M, then for
$k^{2}<k_{20}^{2}=f(m+M) F_{2}\left(r_{20}\right)$ there are no steady motions; for $k^{2}=k_{20}^{2}$ a unique solutions exists, while for $k^{2}>k_{20}^{2}$ there are two families of steady motions $r=r_{2}^{+}\left(k^{2}\right)$ and $r=r_{2}^{-}\left(k^{2}\right)$, with $r=r_{2}^{+}\left(k^{2}\right)>r_{20}>r>r_{2}^{-}\left(k^{2}\right)$.

Calculating the coefficients of the second variation matrix of the modified potential at the steady motions (3.1), we have

$$
\begin{aligned}
& \frac{\partial^{2} W}{\partial \varphi^{2}}=-f M m \frac{a^{2}}{\left(r^{2}+a^{2}\right)^{3 / 2}}<0, \quad \text { Vr, } \frac{\partial^{2} W}{\partial \varphi \partial r}=0 \\
& \frac{\partial^{2} W}{\partial r^{2}}=\mu M \frac{k^{2}}{r\left(r^{2}+a^{2}\right)^{1 / 2}} \frac{F_{2}^{\prime}}{F_{2}^{2}} \gtrless 0 \text { for } r \gtrless r_{20}
\end{aligned}
$$

Consequently, all steady motions of the form (3.1) are unstable in the secular sense, and the degree of instability of the family $\varphi=\pi / 2, r=r_{2}^{+}\left(k^{2}\right)$ is unity (i.e. this family is Lyapunov-unstable), while the degree of instability of the $\varphi=\pi / 2, r=r_{2}^{-}\left(k^{2}\right)$ family is equal to 2 (i.e. gyroscopic stabilization is possible, see below).

We also note that the angular velocity of the point M and rod rotating about their common centre of mass for steady motions (3.1) is given by the relation

$$
\begin{equation*}
\omega_{2}^{2}=\left\{\frac{f(M+m)}{r^{2}\left(r^{2}+a^{2}\right)^{1 / 2}}\right\}_{r=r_{2}\left(k^{2}\right)} \tag{3.3}
\end{equation*}
$$

4. We will investigate the possibility of gyroscopic stabilization of the steady motions

$$
\begin{equation*}
\varphi=\pi / 2, \quad r=r_{2}^{-}\left(k^{2}\right) \tag{4.1}
\end{equation*}
$$

whose degree of instability is two.
Linearizing in a neighbourhood of solution (4.1), the equations of perturbed motion of the reduced system can be written in the form

$$
\begin{align*}
& A x^{\because}+G y^{\cdot}-C x=0, \quad B y^{\bullet}-G x^{\cdot}-D y=0 \tag{4.2}\\
& A=1, \quad B=\left\{\frac{r^{2}}{3(1-\mu) r^{2}+a^{2}}\right\}, \quad G=\left\{\frac{2 a \sqrt{f(M+m)}}{\left[3(1-\mu) r^{2}+a^{2}\right]\left(r^{2}+a^{2}\right)^{1 / 4}}\right\} \\
& C=f(M+m)\left\{\frac{2 a^{4}-3(1-2 \mu) a^{2} r^{2}-3(1-\mu) r^{4}}{\left[3(1-\mu) r^{2}+a^{2}\right] r^{2}\left(r^{2}+a^{2}\right)^{3 / 2}}\right\}, \quad D=\frac{f(M+m)}{\left\{\left(r^{2}+a^{2}\right)^{3 / 2}\right\}} \\
& \left(x=r-r_{2}^{-}\left(k^{2}\right), y=a(\varphi-\pi / 2)\right)
\end{align*}
$$

The braces indicate that the expressions inside are calculated for $r=r_{2}^{-}\left(k^{2}\right)$.
The sufficient conditions for gyroscopic stabilization of the null solution of system (4.1) have the form (see [3])

$$
\begin{equation*}
G^{2}>A D+B C+2 \sqrt{A B C D} \tag{4.3}
\end{equation*}
$$

from which it follows that gyroscopic stabilization is impossible when $r_{2}^{-}\left(k^{2}\right) \rightarrow 0$ and clearly occurs when $r_{2}^{-}\left(k^{2}\right) \rightarrow r_{20}, \mu \rightarrow 1$. Indeed, relation (4.3) is not satisfied when $r=0$ and is always satisfied when $r=r_{20}, \mu=1-0$.

In conclusion we note that the system considered cannot perform steady motions other than (1.4), (1.5) because the first equation of system (1.3)

$$
\begin{equation*}
\frac{\mu(1-\mu)}{2 a} r \sin \varphi\left\{\frac{\Phi^{+}+a}{\Phi^{+}\left[\Phi^{+}+(r \cos \varphi+a)\right]}-\frac{\Phi^{-}-a}{\Phi^{-}\left[\Phi^{-}+(r \cos \varphi-a)\right]}\right\}=0 \tag{4.4}
\end{equation*}
$$

is only satisfied by the valucs $\varphi=0, \pi / 2(\bmod \pi)$. Indeed, for $\varphi \neq 0, \pi / 2(\bmod \pi) \mathrm{Eq}$. (4.4) is equivalent to the equation $\Phi^{+}-\Phi^{-}+2 a=0$, which has no solutions.

Furthermore, we note that the critical values r_{10} and r_{20} of the functions F_{1} and F_{2} satisfy the inequality $r_{10}>r_{20}, \mu \in(0,1)$, while the functions themselves satisfy the inequality $F_{1}>F_{2}, r>a$.

Fig. 1.
Taking the last remarks into account, the results of the investigation can be represented in the form of a birfurcation diagram in the (r, k^{2}) plane (Fig. 1). Curves a and b correspond to solutions (2.1) and (3.1), and the numbers (0), (1) and (2) denote the degree of instability of the corresponding branches.

REFERENCES

1. SULIKASHVILI R. 5 ., On straightine hbration points in the restricted plane problem of three bodies. Apphed Mathematics, Vol. 1, pp. 358-362. Intern. Acad. Publ., Beijing, 1989.
2. BELETSKII V. V. and PONOMAREVA O. N. Parametric analysis of the stability of relative equilibrium in a gravitational field. Kosm. Issled. 28, 664-675, 1990.
3. CHETAYEV N. G., Stability of Motion. Papers in Analytical Mechanics. Izd. Akad. Nauk SSSR, Moscow, 1962.
