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The plane motion of a system of two mutually gravitating bodies, one a sphere with a spherical mass 

distribution and the other a homogeneous rod, is considered. All steady motions of the system are found, 

and the conditions for their stability are obtained in both the secular sense and in the first-order 

approximation. The possibility of gyroscopic stabilization of steady motions with instability of degree two is 

noted. The results of the investigation are presented in the form of a bifurcation diagram. 

1. CONSIDER the plane motion of two mutually gravitating bodies, one of which is a material point of 
mass M (or a sphere with a spherical mass distribution), and the other is a homogeneous rod of mass 
m and length 2~. The state of the system will be described by the distance I between the mass centres 
of the bodies, the angle 0 between the line joining the centres of mass and some direction fixed in the 
plane of motion, and the angle p between the rod and the line joining its midpoint to the point M. 

The kinetic and potential energies of the system [l] (f being the gravitational constant) 
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do not depend on 0. The system under consideration consequently has the areas integral 

aT/ad=m(p? t ‘/3a2)i t !&ma2$= k= const 

as well as the energy integral T+ KI = const, and can perform steady motions of the form 

0.1) 

r = const , cp = corn%, B = w = const (I.21 

Here the bodies rotate with the same constant angular velocity w about their common centre of 
mass, and the rod is stationary with respect to the point M. 

Ignoring the cyclic coordinate 0, we introduce the Routhian function 
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The steady motion of the original system corresponds to the equilibrium position of the reduced 
system described by the Routhian function R. Here the constants r and q in (1.2) are defined by the 
system 

aw/ap=o, aw/ar=o 
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The reduced potential W’ is r-periodic in cp, and hence we shall study system i 1.3 j for 0 d C,C 5 r. 
The first equation of system (1.3) is identically satisfied (with respect to r) when 

1) cp= 0, 2)~~ n/2 fmoda) t 1.4) 

Here the second equation of system (1.3) acquires the form 
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2. Consider steady motion of the form 

p =0, r= r,(k’) (2.1) 

where rl (k’) is the solution of Eq. (1.5) for i = 1. (Here. obviously, it is assumed that Y>u.) 
The function F, (r) has a lower bound, is positive. tends to infinity both as r+ +CC and as 

~+a + 0, and reaches a minimum at a unique point rlo>a at which its derivative vanishes, where 
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Thus, if the rod lies on the line connecting its centre to the point M, then for sufficiently small 
values of the areas integral constant [k2 < /&, = f(M + m) Fr (rro)] there are no steady motions (Eq. 
(1.5) having no solutions for i = 1); for k’ = kTo a unique solution r = Y~() exists, while for I?‘> k?,, 
there are two families of steady motions r = r: (k*) and r = I;, with r: (k’) > rl,, > rr (k’), 

computing the coefficients of the second variation matrix of the modified potential at the steady 
motions (2.1). we have 
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Thus the family of steady motions cp = 0. Y = r:(k’) is always stable, while the family of steady 
motions cp = 0, r = r;(k’) is always unstable (the degree of instability being unity). 

We also note that the angular velocity of the point M and the rod rotating about their common 
centre of mass for steady motions (2.1) is given by the relation 

3. We consider steady motions of the form 

g= n/2, r = r2(k2 ) ti. 11 

where r2(k2) is the solution of Eq. (1.5) for i = 2 (and here, obviously, it is assumed that r>O). 
The function F2 (r) has a lower bound, is positive, tends to infinity both as r+ + m and as r-+ O+ 1 

and reaches a minimum at the unique point r2()>0 at which its derivative vanishes, where 
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(here F; $0 for rSr2”). 
Thus if the rod is perpendicular to the line joining its centre to M, then tor 
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k2<k& = f(m + M)F,(r2,-,) there are no steady motions; for k’ = k& a unique solutions exists, 
while for k2>k& there are two families of steady motions r = rz(k*) and r = r;(k*), with 
r = rz(k2)>rzo>r>r;(k2). 

Calculating the coefficients of the second variation matrix of the modified potential at the steady 
motions (3.11, we have 
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Consequently, all steady motions of the form (3.1) are unstable in the secular sense, and the 
degree of instability of the family cp = 7r/2, r = rc(k*) is unity (i.e. this family is Lyapunov-unstable), 
while the degree of instability of the q = ?r/2, r = r;(p) family is equal to 2 (i.e. gyroscopic 
stabilization is possible, see below). 

We also note that the angular velocity of the point M and rod rotating about their common centre 
of mass for steady motions (3.1) is given by the relation 

(3.3) 

4, We will investigate the possibility of gyroscopic stabilization of the steady motions 

P= n/2, r = r;(P) 

whose degree of instability is two. 

(4.1) 

Linearizing in a neighbourhood of solution (4.1), the equations of perturbed motion of the 
reduced system can be written in the form 
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The braces indicate that the expressions inside are calculated for I = r;(p). 
The sufficient conditions for gyroscopic stabilization of the null solution of system (4.1) have the 

form (see [3]) 

G2>AD+BC+2mD (4.3) 

from which it follows that gyroscopic stabilization is impossible when r;(k’)+O and clearly occurs 
when r;(#) ~=r*~, p+ 1. Indeed, relation (4.3) is not satisfied when r = 0 and is always satisfied 
whenr=r20,p= 1-O. 

In conclusion we note that the system considered cannot perform steady motions other than (1.4), 
(1.5) because the first equation of system (1.3) 
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is only satisfied by the values 4p = 0, ?r/2(mod T). Indeed, for g#O, &2(mod VT) Eq. (4.4) is 
equivalent to the equation @+ - il?- -I-2a = 0, which has no solutions. 

Furthermore, we note that the critical values rlo and r20 of the functions F1 and Fz satisfy the 
inequality rlo> rzo, p E (0, l), while the unctions themselves satisfy the inequality Fl > Fz , r> a. 
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Taking the last remarks into account, the results of the investigation can be represented in the 
form of a birfurcation diagram in the (Y. k2) plane (Fig. 1). Curves II and b correspond to solutions 
(2.1) and (3.1), and the numbers (O), (1) and (2) denote the degree of instability of the 
corresponding branches. 


